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M.R. Khan*, K.D. Willmert**, and W.A. Thornton*#**
Clarkson College of Technology
New York

Potsdam,

Abstract

An optimality criterion method, which exploits
the concept of one most critical constraint, is
reported. The method eliminates the need to calcu-
late a large set of Lagrangs multipliers for the
active constraints, and also eliminates the need
for a decision as to whether or not a particular
constraint should be considered active. The method
can treat multiple load conditions and stress and
displacemert constraints. Application of the
method to a number of truss and frame structures
demonstrates the efficiency and accuracy of the
me thod.

I. Introduction

The problem of structural optimization has
become of great interest to many rescarchers during
the past few years. The goal of this recent work
has been primarily to obtain a minimum weight struc-
ture subject to various constraints in minimal com-
putational time and with minimal computer storage.
The efficiency of earlier painfully slow mathema-
tical programming techniques for large structural
problems has beenligpsoved considerably by Schmit,
Farshi, and Miura '“’ Venkayga, Gellatly, Berke,
Knot, Gorzynski and Thornton?/°:6+7 nave developed
physical optimality criterion techniques to effiji-
ciently design large scale structures. Also, Dobbs
and Nelson, and Rizzi8+? have recently used mathe-
matical optimality criterion methods based on the
Kuhn-Tucker conditions to obtain minimum weight
designs efficiently. Khan, Thornton and Willmert
applied efficient physical optimality criterion
techniques to simple structures and complex high
speed mechanisms.

10

The development of the method presented here
was motivated by a desire to extend to problems
with multiple constraints of different types (ie,
stress and displacement constraints) the simplicity
inherent in physical optimality criterion methods
developed for single constraints of each type. For
instance, the stress ratio method has over the years
demonstrated a remarkable ability to efficiently
produce minimum weight designs or near minimum
weight designs for a great variety of multiloaded
structures under stress constraints. Likewise,
physical optimality criterion methods for displace-
ment constraints, have been derived and applied
with success.

Each of these independent physical optimality
criterion methods yives rise to a simple recursion

*This research was supported in part by ONR under
Research Grant No. N000l4-76-C-0064.

*Instructor, Civil and Environmental Engineering.
**Associate Professor, Mechanical and Industrial
Engineering.
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formula for redesign. If there is only one type of
constraint (ie, either stress or displacement or
buckling), the redesign process requires only an
analysis of the structure and an application of the
appropriate recursion formula. There is no
requirement, in addition to an analysis of the
structure, to solve, (a) a set of linear algebraic
equations for a set of Lagrange multipliers (as in
Ref. 8), or (b) to solve a linear program based on
a linearization of an assumed set of active and
potentially active constraints (as in Ref. 1), or
(c) to solve a nonlinear programming problem (Ref.
3) in the active and potentially active constraints,
in order to obtain a new design.

In this paper, recursion formulas for stress
and displacement constraints, which result from
the Kuhn-Tucker necessary conditions for each type
of constraint, are incorporated into a design
algorithm which exploits the concept of a single
most critical displacement constraint. The
algorithm requires only one aralysis of the struc-
ture per design cycle. Redesign of each member is
achieved by means of one of two recursion formulas.
No sets of Lagrange multipliers need be calculated,
no subsidiary LP or NLP must be solved, no decision
as to active or potentially active constraints must
be made, and no move limits need be used. The
method is applicable to two and three dimensional
trusses and two dimensional frames, of fixed
geometry, under multiple load conditions and stress
and displacement constraints.

II. Theory

The design problem to be solved here can be
stated as: find the vector of design variables
A = (A), A3, ..., Ay) such that the volume of the
structure

N
vV = z A.l. + minimum (1)
5 i
i=1
while
Oix < 9 i=1, ..., N
k=1, ..., K (2)
ujk < uj J =1, sone 3

where A; and 1; are the cross-sectional area and
length of the ith member, N is the number of mem-
bers, Ojx is the stress in the ith member in the
kth load condition, K is the number of load condi-
tions, and ai is the limiting stress in the ith
member. Also, ujk is the displacement in jth con-
strained degree of freedom, u; is the limiting
value of the displacement in the jth constrained
degree of freedom, and J is the number of displace-
ment constrained degrees of freedom.
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Stress Constraints

Considering stress constraints alone, the
Kuhn-Tucker conditions for the design problem of
eqs. (1) and (2) results in the well known stress
ratio formula for redesign (see Ref. 10 for
example)

max |0y, |
(a.l = f——==1A.] (3)

where V is the iteration counter. If design
variable linking is used to form groups of design
variables, where members of one group are the same
size, eq. (3) is applied to each member of a group,
and the largest A; from eq. (3) is taken as the
size for all members of the group.

Displacement Constraints

Considering displacement constraints alone,
the Lagrangian for the design problem of egs. (1)
and (2) is

J
L=v+ ) Zx u,) (a)
j=1 k=1 i

and the Kuhn-Tucker necessary conditions for a
minimum are

J du

v ik _ e

n; + 21 kfl Mk w, 0 i dmliii N
= (5)
ug " Gj <0or Ajk 50 j=1,...,J

k=1,...,K

Suppose now that the pth constrained displacement
in the gqth load condition is exactly active, and
the other constrained displacements are not. Then
eq. (5) becomes

v du
3T-+)‘pqﬁ93=o i=1,...,N

(6)

By means of the unit load theorem of structural
analysis, the derivative in the first of egs. (6)
can be written (Ref. 11)

2 o
a: - xil(ixi -
i Ay

where K; is the stiffness matrix of the ith mem-
ber, xj is the displacement vector for the ith
member due to the qth load condition, and x; is
the displacement vector for the ith member due to
a unit load applied at the location and in the
direction of the pth constrained degree of free-
dom. Substituting egs. (1) and (7) into (6)
gives:

“ A KKK ®0 isL,....N )

Aglg = Agg*iKi®y

and summing eq. (8) over all members results in

qu..u"_.
Pq P

(9)
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Combining eqs. (8) and (9), results in

K. X,
1= (o (i—i*—) (10)
Yp iti

which is the optimality criterion which must be
satisfied at the optimum design. From eq. (10)
the following recursive formula results

e Ai}v (11)
95 |

R
{ak.. (up)(

If design variable linking is used and n members
are to have the same design variable A;, eq. (ll)
is written as

]
faty,, = {1 (1————) Al (12)

where the summation over j in eq. (12) is over
those members which have common design variable Ai.

In eqs. (11) and (12), n is a relaxation
parameter which is used to control the rate of
convergepce and stability of the method. It is the
only arbitrary parameter involved in the algorithm.
Values between 0.001 and 0.2 have been found to be
appropriate.

The derivation presented above is incorporated
into the design algorithm of the next section. Its
use is justified for multi-displacement constrained
problems because of the selection of the most
active (or most violated) constraint. In this
method, as well as most currently available tech-
niques, there is normally only one most active
constraint at any iteration. There may be many
constraints which are nearly active--this of course
is especially true at the optimal design, but only
one which is most active. The true optimal design
may be one having several active constraints, but
this is almost never exactly obtained. This
characteristic is further enhanced by the fact that
finite arithmetic is used, so round-off eliminates
additional equalities. 1In the special case where
two or more displacement constraints are exactly
equal because of symmetry or other structural limi-~
tations, these exactly equal displacements are
treated as one constraint. In the method presented
here, this most active (or most violated) con-
straint in some load condition is considered to be
the only active constraint; all other displacement
constraints are considered inactive.

The recursion relations of eqs. (1l1) and (12)
have been applied to several displacement con-
strained problems, but practical problems will be
those with both stress and displacement con-
straints. Thus, the stress recursion formula of
eq. (3) has been combined with the displacement
recursion formulas of eqs. (11) and (12) and an
important scaling procedure to produce a design
procedure which is applicable to stress and dis-
placement constrained trusses and frames under
multiple load conditions.
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II1. Design Algorithm

Choose any uniform design Aj, i=1,2,...,N.
Choose a value of the relaxation parameter (n).
[Say 0.15 to 0.08)

Analyze the design for each load condition.

Check displacements in each load condition at
those nodes where displacement limitations are
imposed and determine the node and direction
for which the calculated displacement most
closely approaches (or exceeds) the allowable
displacement. This is the most critical dis-
placement (upq).

Knowing the magnitude of the most critical dis-
placement (u,y) from step 3 and the value of
the allowable displacement (Gp): scale the
chosen design so that the most critical dis-
Placement becomes active. All other displace-
ment constraints will then be inactive. Let
the scaled design be denoted by Ai, where

lu |
Ay =—Fa ge1,2,..000 (13)
g |

If the structure was analyzed with the scaled
design then displacement vectors calculated at
step 2 would have been

i=1,2,...,N (14)

and stiffnes: matrix from the scaled design
would be:

lu |
k' = —Bd g (15)

u

l5, |

From the scaled displacement vectors (xi) and
design Ai, compute the maximum stress, m:x]oik|

in each member i. Also, determine the stress
response ratio for each member and let the most
critical response ratio be obtained for the nth

member. This is denoted by R,. If Ry > 1
N
compute V1 = Rn(.z Aili)' or if Rn < 1 compute
i=1
N
vye 1 AL
i=]

Using the scaled design, apply a unit load only
at the node and in the direction of the active
displacement constraint. Let the set of s
resulting nodal displacements be denoted by Xg-
Note that this is the only unit load that
needs to be applied, and that the structural
stiffness matrix inverted at step 2 is used
here as scaled in step 4 to compute x;.

From eq. (7) compute

du x Tk
3;g3 P .iiTi_i (16)
X i

10.

11.

12.

Also, the Lagrange multiplier associated with
the critical displacement is computed from
eq. (9) as:

ey ) TR (17)

Group the members as follows:

. If a“pq/ahi <0 or 9 > O member i

belongs to group G1

ii. Otherwise, member i belongs to Group G2

Note that either group could be empty and
a particular member would belong to only one
group at a time.

Use the stress ratio formula, eq. (3) to
resize the elements of G, as:
m:xloikl
.
(o= )Ai]\,
g.
i

[A;]

ilvel T

Resize the elements of G, using eq. (11) (or
eq. 12), as

(A,) = { an} (18)

17 v+l

Scale the design and compute the new critical
response ratio Rﬁ and new V! using steps 2
through 5. If the quantity I‘Vl'Vi)/V1| is
less than € ( a small number ranging between
0.001 to 0.010), then go to step 12; other-
wise check the following

(a) If V] < V] continue with step 6 with the
old value of n.

(b) If V; >V, Ry <1, and R} > 1, the
designer may stop at this point and the
design of the previous iteration would be
very close to the optimum design. Other-
wise n is reduced to one third or one
quarter of the starting value and the
process is continued with step 6.

If the converged design of step 5 is com-
pletely displacement dominated then RA would
be less than 1 and this design is the optimum
design. If the converged design of step 5 is
completely stress dominated, that is, all
members are in G; and hence overstressed,
simply scale the design (multiplying all the
design variables with Rp) so that no stress
constraint is violated to achieve the optimum
design. 1f the converged design has some mem-
ber overstressed while others not, then
following situations may occug:

(a) If Vj < V] and (Ry-1) < 0.05, scale the
design of the previous iteration by multi-
plying all the design variables with Rp
and this is then taken to be optimum
design.




(b) If vy < v, and (R,-1) £ 0.05, scale the
design of the current iteration by multi-
plying all the design variables by R; and
this is then taken to be the optimum
design.

(c) If (Ry=1) > 0.05 reduce the value of n to
half or one third of the starting value
and go back to step 6 and repeat the
process.

Choice of Relaxation Parameter (1)

This is the only arbitrary parameter in the
design procedure. It controls the stability and
convergence of this method. Experience indicates
that a value of n between 0.001 to 0.2 results in
optimum designs being obtained without difficulty.
It is important to note that selecting the value
fram this range does not affect the optimum design.
The same design will be obtained using any value of
n between 0.001 and 0.2, but it will be located in
fewer iterations with the larger values. One dif-
ficulty with the larger values of n is that the
technique brings the design close to the optimum in
a very few analyses, but oscillations will occur
very close to the optimum. This is easily detected
when, at a particular 1teration, the scaled design
weighs more than the previous design. When this
occurs, N is reduced and the procedure is
stabilized.

IV. Results
In this section, results for six classical
truss examples and two frame examples are presented.
These are intended to show the efficiency and

accuracy of the desiygn algorithm of Section III.

1. Ten Bar Truss

This is a cantilever truss which has been
studied by many researchers (Ref. 1,2,4,5,8,9). It
is shown in Fig. 1. The material is aluminum of
specific weight 0 = 0.1 1b/in3 and modulus of elas-
ticity E = 10x106 psi. Displacement limits of
4+ 2.0 inches are imposed on all nodes in both direc-
tions, and the limiting value of stress in each mem-
ber is + 25,000 psi. No design variable linking is
used so there are 10 independent design variables.
Two cases are considered. Case 1 has P) = 100 K,

92 = 0, and case 2 has Pl. = 150 K, Py - 50 K. A
single loading condition is considered in each case.
A lower limit on member size of 0.1 in“ is enforced.

The final design for case 1 is given in Table
la. In this case the problem was started with a
uniform design with each cross-sectional area equal
to 100 in?. A starting value of n = 0.2 was chosen
and was automatically changed to 0.05 as the
design came close to the optimum. At iteration 15
a weight of 5085 1lbs was obtained and the design
was similar to one previously reported by other
researchers. However, the algorithm did not stop
automatically until iteration 18 at which point the
weight dropped to 5067 lbs, the displacement of
node 1 in the y-direction was -2.0 inch, the dis-
placement of node 4 in the y-direction was 0.4%
below its limiting value, and member 5 had stress
2.71% below its yield value. It is interesting to

note that the final design has the lowest weight
ever achieved for this problem.

The final design for case 2 is given in Table
1b. This problem was started with the same initial
design and N value as for case 1. The design was
automatically converged at iteration 9 when
member 5 had its stress equal to the limiting value
and the displacement of node 4 in the y-direction
was 0.3\ below its specified limit. The final
design obtained is in good agreement with previous
designs.

2. Four Bar Space Truss

The structure is a four bar pyramid truss
shown in Fig. 2. The material is aluminum with
p = 0.1 1b/in3 and E = 10x10® psi. Stress limits
of & 25,000 psi are imposed on all members. No
design variable linking is used. Two cases are
considered. Case 1 has a loading of Py = 10 X,
P, = 20 K, and P, = -60 K, and a displacement
limit of ¢ 0.3 inch is imposed at the top joint in
the z~direction. Case 2 has a loading of Py = 40K,
Py = 100 K, P, = -30 K, and displacement limits at
the top joint are + 0.3 inch in the x-direction,
+ 0.5 inch in the y-direction and % 0.4 inch in
the z-direction. Results are given in Table 2.
This table shows good correspondence, with previous
results, of the design obtained with the new method,
and its efficiency. The init‘al design for both
cases had all members at 100 in“. In both cases 1
and 2 member 3 had stress equal to its limiting
value, while in case 1, displacement of the top
node in the z-direction was 3.8% below its limit
and in case 2 displacement in the y~direction was
1.9% below.

3. Twenty-two Member Space Truss

This structure, which is shown in Fig. 3, has
each joint connected to every other joint by a
member, except that members between support joints
are excluded. It was studied in Ref. 12 in the
context of determining the global optimum of
trusses with vanishing members.

All members are aluminum with E = 10x10% psi
and p = 0.1 lb/inJ. The 22 members are linked
into 7 groups as shown in Table 3. Table 3 also
gives the limiting stresses for each group of mem-
bers. Displacement constraints of + 0.2 inches at
all nodes in all directions are imposed, and a
minimum member size of 0.1 in“ holds if a member is
not prescribed to vanish. Three load conditions,
as given in Table 4, are considered in each of 3
design cases. Case 1 has all groups of members
nonvanishing, case 2 has the members of group ¢ set
to zero, and in case 3, the members of group 3
vanish. Table 5 summarizes the results of the
3 cases obtained by the method of this paper and
compares them with the results of Ref. 12. Case 1
is the global optimum for this truss. The present
method achieves a design with weight within 1% of
the global minimum weight in 5 analyses. Cases 2
and 3 converge to designs very close to the
results of Ref. 12 in just 6 analyses.

The initial design for all 3} cases was uniform
with all members at 10 in2. The starting values of
parameter n for the three different cases were
arbitrarily chosen to be 0.2, 0.125 and 0.1 respec-
tively. These changed to one quarter of their
starting values at the end of optimization
process. Also, the design process was studied
by starting all 3 cases with the same value of n.
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The tinal designs obtained were the same as those
presented in Table 3.

4. Twenty-five Bar Transmission Tower Truss

This much studied truss (Refs. 1,2,4,5,8,9) is
shown in Fig. 4. The material of all members is
again aluminum with E = 10x10® psi and p =
0.1 1b/ind. Design variable linking is used to
reduce the number of independent design variables
from 25 to 8. Table 6 gives the members of each
design variable group. (This problem was solved
using both 25 and 8 independent design variables,
with insignificant differences in CPU time. The
results for the 8 design variable case are pre-
sented here for purposes of comparison with pre-
vious results.) The stress limits for each group
of members are also given in Table 6. Displacement
limits of # 0.35 inch are imposed on every node in
every direction. Two load conditions are con-
sidered. ‘These are given in Table 7. Table 8
gives the final design obtained and compares this
with previously obtained designs. The comparison
indicates that the method of this paper gave a
design similar to those previously obtained, but
with a weight about 2% higher. The problem was
started with n equal to 0.1 and all members at 100
in?.  The design automatically converged at 9 itera-
tions with horizontal displacements at the joints 1
and 2 equal to their limiting values. The final
design is completely displacement dominated.

5. _Seventy-two Member Space Truss

This structure, shown in Fig. 5, has been
studied previously in Refs. 1,2,4,5 and 6. All
members are aluminum with E = 10x10® psi and p =
0.1 1b/in3. sStress limits of 4+ 25,000 psi are
imposed on all members. Displacement limits of
4+ 0.25 inch in the x and y directions are imposed
on the 4 top nodes. A lower limit of 0.1 in“ is
imposed on all members. Design variable linking is
used. Members are placed in 16 groups as shown in
Table 9. Thus, there are 16 1independent design
variables. Two load conditions are considered.
These are given in Table 10. Table 11 gives the
final designs obtained for two initial values of rj,
and compares these with previous results. The
design procedure was started with all members equal
to 100 in2. Starting with 1 = 0.15, it was noted
that at iteration 8 a weight of 394 lbs was
achieved but the procedure continued until itera-
tion 10 when it was automatically stopped with a
weight of 388 lbs. At the optimum, in the second
load condition the first four members had their
stress equal to their limiting values while the
displacements of node 1 in the x and y directions
were 2.1V below their specified limits.

6. Two Hundred Member Planar Truss

This structure, previously studied in Ref. 13,
is shown in Fig. 6. All members are steel with E =
30x10® psi and p = 0.283 1b/in>. A stress limit of
+ 10,000 psi is imposed on all members, and dis-
placement limits of + 0.5 inch are imposed on all
nodes in both directions. The structure is symme-
tric about the vertical centerline. This reduces
the number >f independent design variables to 105.
Three load conditions are considered:

1. 1 X in positive y direction at all nodes
on line AB;

2. 10 X in negative 2z direction at all nodes
on lines AB, CD, EF, GH, and 1J;

3. load conditions 1 and 2 acting together.

The final design obtained is given in Table 12.
The final weight of 32,996 1lbs obtained with 8
analyses and 34.35 minutes of CPU time on an IBM
360/65 compares favorably with the weight of
31,020 1lbs obtained in 90 minutes of CPU time on an
IBM-7094-11-7044-DCS. Comparing the design
obtained by the present method with that obtained
by Ref. 13 indicates that they are somewhat dif-
ferent. Results of several solutions obtained by
the method of this paper indicate that the region
of the optimum is flat, i.e., designs of signifi-
cantly varying member sizes are possible for
essentially the same weight.

Both designs of Table 12 have one displacement
constraint active at the optimum. This is the

displacement at node I in the z-direction.

7. Three Member Frame

The structure is shown in Fig. 7. It is a
three member rigid frame. Each member is treated
by one finite element. Axial, shear, and bending
moment, are included in the formulation, resulting
in 6 degrees of freedom per element and 3 degrees
of freedom per joint. The material is steel with
E = 30x10® psi and p = 0.283 1b/in3. The design
variable for each member is the cross-sectional
area A. The section modulus S and moment of,
inertia I are related to area as S = 9A and 1 =
75A. These relationships were chosen to give
sections representative of available wide flange
shapes while maintaining the linearity among A, S,
and 1. The stress limits for all members are
+ 24,000 psi. One load condition, as shown in Fig.
7, is imposed. Three cases are considered. Cases
1 and 2 include the above stress limits and the
following displacement constraints; case 1 has the
displacements of joints 2 and 3 limited to # 0.2.
inch in the x and y directions and case 2 has the
same displacements limited to # 0.07 inch. For
case 3, the stress limits are ignored and only dis-
placement constraints of + 0.2 inches at joints 2
and 3 1in both directions are considered. Table 13
gives the results of these 3 cases and compares
them to previously obtained results. It can be
seen that excellent agreement has been obtained at
a fraction of the CPU time required for these pre-
vious results.

Initial designs for Briggs (Ref. 14) and SUMT
were uniform at 75 inzf and those for the method of
this paper uniform at 100 in“. The n values of
Table 13 were constant during the design process.

8. Twenty-five Member Frame

The structure is shown in Fig. 8. Members are
defined as in Example 7. One load condition is
considered as shown in Fig. 8, and one finite ele-
ment is used per member. All members are 100
inches in length except the diagonal members which
are 141.4 inches long. Stress limits are + 24,000
psi for all members. Two cases are considered.
Case 1 has the above stress limits and displace~
ment limits of + 3.0 inches at joints 1, 2, 3, 4,
5, and 6 in both directions. Case 2 has the above
stress limits and displacement limits of
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+ 0.05 inch at joints 1, 2, 3, 4, 5 and 6 in_both
directions. The minimum member size is 5 in“.
Results are shown in Table 14. Both cases were
started with all members equal to 100 in2. case 1
is compared with results from Ref. 14 with excel-
lent agreement in the designs. The method of this
paper can be seen to produce the optimal design
with a drastic reduction in the CPU time required
for the method of Ref. 14. The design for case 1
is fully stressed at the optimum and the displace~
ment limits are inactive. The case 2 design is
displacement constrained, with no active stress
constraints. No previous results were available
for comparison.

The n values given in Table 14 did not change
during the design process.

Iv. Conclusions

A new design algorithm has been developed for
stress and displacement constrained trusses and
frames under multiple loadings. By means =f an
extensive set of test problems, the method #“as been
shown to be both accurate and efficient. 1In all
problems studied, known results were reproduced
very closely with the number of structural analyses
required in the iterative process approximately the
same as the number required by the current most
efficient methods. When it is considered that the
computational effort required per iteration for the
method of this paper is considerably less than that
required for all other current methods, and also
that the core storage required is essentially only
that required for the analysis capability, the
present method can be seen to be very simple as
well as being highly efficient.
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Table la.

Comparison of Final Designs for Ten Bar Truss, Case 1

Final Cross-Sectional Areas (in<)

Member Schmit & Miura Schmit & Venkayya Gellatly Dobbs & Rizzi This
No. NEWSUMT CONMIN Farshi & Berke Nelson Paper
Ref.2 Ref.2 Ref.l Ref.4 Ref.5 Ref.8 Ref.9

1 30.670 30.57 33.432 30.416 31.350 30.500 30.731 30.980
2 0.100 0.369 0.100 0.128 0.100 0.100 0.10 0.10
3 23.760 23.97 24.260 23.408 20.030 23.290 23.934 24.163
4 14.590 14.73 14.260 14.904 15.600 15.428 14.733 14.805
S 0.100 0.10 0.100 0.101 0.140 0.100 0.100 0.100
6 0.100 0.364 0.100 0.101 0.240 0.210 0.100 0.406
T 8.578 8.547 8.338 8.696 8.350 7.649 8.542 7.547
8 21.070 21.11 20.740 21.084 22.210 20.980 20.954 21.046
9 20.960 20.77 19.690 21.077 22.060 21.818 20.836 20.937
10 0.100 0.320 0.100 0.186 0.100 0.100 0.100 0.100
wt(Tbs) 5076.85 5107.3 5089.0 5084.9 5112.0 5080.0 5076.66 5066.98
Analyses 13 14 24 26 19 15 11 182
‘A weight of 5085 lbs was achieved after 15 analyses
Table lb. Comparison of Final Designs for Ten Bar Truss, Case 2
Final Cross-Sectional Areas (inz)

Member Schmit & Miura Schmit & Venkayya Gellatly Dobbs & Rizzi This
No. NEWSUMT CONMIN Farshi & Berke Nelson Paper
Ref.2 Ref.2 Ref.1l Ref.4 Ref.5 Ref.8 Ref.9

23.550 23.55 24.289 25.190 - 25.813 23.533 24.716
2 0.100 0.176 0.100 0.363 - 0.100 0.100 0.100
3 25.290 25.20 23.346 25.419 - 27.233 25.291 26.541
4 14.360 14.39 13.654 14.327 - 16.653 14.374 13.219
5 0.100 0.100 0.100 0.417 - 0.100 0.100 0.108
6 1.970 1.967 1.969 3.144 = 2.024 1.9697 4.835
7 12.1390 12.400 12.670 12.083 = 12.776 12.389 12.664
8 12.810 12.860 12.544 14.612 = 14.218 12.825 13.775
9 20. 340 20.410 21.971 20.261 = 22.137 20.328 18.438
10 0.100 0.100 0.100 0.513 - 0.100 0.100 0.10
Wt (1lbs) 4676.96 4684.11 4691.84 4895.60 - 5059.7 4676.92 4792.52
Analyses 11 10 23 13 - 12 12 9
Table 2a Table 2b
Final Designs, Four Bar Pyramid, Case 1 Final Designs, Four Bar Pyramid, Case 2
Final Cross-Sectional Areas (in?) Final Cross-Sectional Areas (in2)
Member Schmit & Venkayya Member Schmit & Venkayya
No. Farshi This No. Farshi This
Ref.1l Ref.4 Paper Ref.l Ref.4 Paper
1 0.0 0.277 0.0 1 3.210 3.147 3.419
2 3.765 4.1527 3.651 2 2.614 2.147 2.511
3 0.769 0.746 0.769 3 2.159 2.162 2.159
4 2.514 2.477 2.759 4 0.0 0.0 0.0
Wt (1bs) 117.89 126.43 121.50 Wt (1bs) 128.53 128.561 130.625
Analyses 16 37 6 Analyses 14 - 7
54




Table 3

Member Linking Groups and Stress Limits,
Twenty-two Member Space Truss

Table 4

Load Conditions for Twenty-two

Member Space Truss

Design Lower Upper Load Load Components
Variable Members of Limiting | Limiting Condition  Node Py Py P,
Group Group Stress Stress Numbe r (Kips) (Kips) (Kips)
umbe (psi) (psi)
S—— = 1 -20 0 -5
1 1,2,3,4 24,000 36,000 2 =30 0 =5
2 5.6 30,000 - =30 0 =3
3 7.8 28,000 ~29 0 =20
4 9,10 26,000
5 11,12,13,14 22,000 ; _§g -5 o
6 15,16,17,18 20,000 . = '5‘5’ g
, 20, 22 18,000 36,000 i ™
7 19,20,21, 4 -20 &n 0
1 -20 0 35
2 -20 0 0
3 -20 (] 0
4 -20 0 -35
Table 5. Final Design Comparison, Twenty-two Member Space Truss
Group Case 1 Case 2 Case 3
Number Sheu & Schmit This Paper Sheu & Schmit This Paper Sheu & Schmit This Paper
Ref. 12 Ref. 12 Ref. 12
1 2.6288 2.5627 2.6101 2.5262 2.5657 2.4902
2 1.1624 1.5530 1.4234 1.9529 1.1331 1.8126
3 0.3433 0.2813 0.587 0.5475 0.0 0.0
4 0.4231 0.5124 0.0 0.0 0.6461 0.6581
5 2.7823 2.6261 2.7861 2.5900 2.6738 2.5442
6 2.1726 2.1314 2.0891 2.2178 2.1768 2.2419
7 1.9523 2.2128 2.0935 2.2630 2.1613 2.2799
Wt (1lbs) 1024.80 1034.74 1028.07 1040.51 1029.35 1040.47
Analyses -a 5 -a € -a 6
®Not Applicable
Table 6 Table 7
Member Linking Groups and Stress Limits, Load Conditions, Twenty-five
Twenty-five Member Transmission Tower Truss Member Transmission Tower Truss
Design Lower Upper Load Node Direction
Variable Members of Limiting Limiting Condition x y z
Group Group Stress Stres;
s 2 s
Number (1bs/in<) | (1bs/in¥) 1 1 1K 10 X -5 K
1 1 35092.0 40,000.0 § °5 3 18 . '3 .
2 2,3,4,5 11590.0 & .S x 0 0
3 6,7,8,9 17305.0 i
4 10,11 35092.0 2 1 0 20 X -5 K
5 12,13 35092.0 2 o -20 K -5 K
6 14,15,16,17 6759.0
7 18,19,20,21 6959.0
8 22,23,24,25 11082.0 40,000.0
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Table 8. Final Designs, Twenty-five Member Transmission Tower Truss
Members Final Cross Sectional Areas (in?)
T Srowp | schmit s Miura Schmit & | Venkayv- | Gellatly | Dobbs & Rizzi This
: NEWSUMT CONMIN Farshi & Berke Nelson Paper
Ref.2 Ref.2 Ref.l Ref.4 Ref.5 Ref.8 Ref.9
1 0.010 0.166 0.010 0.028 0.0100 = 0.01 0.01
2 1.985 2.017 1.964 1.942 2.0069 - 1.9884 1.75%
3 2.996 3.026 3.033 3.081 2.9631 - 2.9914 2 869
4 0.010 0.087 0.010 0.010 0.0100 - 0.01 0.01
5 0.010 0.097 0.010 0.010 0.0100 - 0.01 0.01
6 0.684 0.675 0.670 0.693 0.6876 - 0.684 0.845
7 1.677 1.636 1.680 1.678 1.6784 - 1.6767 2.011
8 2.662 2.669 2.670 2.627 2.6638 - 2.6627 2.478
Final
Wt (lbs) 545.172 548.475 545.225 545.49 545.36 553.4 545.163 553.94
Analyses
Needed 10 9 12 5 8 10 10 9

aAreas not reported

Table 9 Table 10 {
Member Linking Groups, Load Conditions, {
Seventy-two Member Truss Seventy-two Member Truss i
D(e;:;zg ::::::19 Members in Group Co:\ﬁ:ion Node o Dire§t1on e

s e 1 1 5 K 5 K -5 K 1

2 5,6,7,8,9,10,11,12 2 1 0 0 -5 K

3 13,14,15,16 2 0 0 ~5 K

a 17,18 < : 5 -f !

5 19,20,21,22

6 23,24,25,26,27,28,29,30

7 31,32,33,34

8 35,36

9 37,38,139,40

10 41,42,43,44,45,46,47,48

11 49,50,51,52

12 53,54

13 55,56,57,58

14 59,60,61,62,63,64,65,66

15 67,68,69,70

16 71,72
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Table 11.

Final Designs, Seventy-two Member Truss

Nebbars of Final Cross-Sectional Areas (inz)
Group Schmit & Miura Schmit & Venk Gellatly | Berke This This
NEWSUMT | CONMIN | Farshi enkayya| ¢ Berke | & knot Paper Paper
Ref.2 Ref.2 Ref.l Ref.4 Ref.5 Ref.6 (n=0.1) (n=0.15)
1 0.1565 0.1558 0.1585 0.161 0.1492 0.1571 0.1494 0.1519
2 0.5458 0.5484 0.5936 0.557 0.7733 0.5385 0.5698 0.5614
3 0.4105 0.4105 0.3414 0.377 0.4534 0.4156 0.4434 0.4378
4 0.5699 0.5614 0.6076 0.506 0.3417 0.5510 0.5192 0.5317
s 0.5233 0.5228 0.2643 0.611 0.5521 0.5082 0.6234 0.5814
6 0.5173 0.5161 0.5480 0.532 0.6084 0.5196 0.5231 0.5273
7 0.1000 0.1000 0.1000 0.100 0.1000 0.1000 0.100 0.100
8 0.1000 0.1133 0.1509 0.100 0.1000 0.1000 0.1963 0.1583
9 1.267 1.268 1.1067 1.246 1.023% 1.2793 1.2076 1.2526
10 0.5118 0.5111 0.5792 0.524 0.5421 0.5149 0.5208 0.5244
11 0.1000 0.1000 0.1000 0.100 0.1000 0.1000 0.100 0.100
12 0.1000 0.1000 0.1000 0.100 0.1000 0.1000 0.100 0.100
13 1.885 1.885 2.0784 1.818 1.4636 1.8931 1.7927 1.8589
14 0.5125 0.5118 0.5034 0.524 0.5207 0.5171 0.5223 0.5259
15 0.1000 0.1000 0.1000 0.100 0.1000 0.1000 0.100 0.100
16 0.1000 0.1000 0.1000 0.100 0.1000 0.1000 0.100 0.100
Final
Wt (1lbs) 379.640 | 379.792 388.63 381.2 395.97 379.67 386.718 387.67
Analyses
Needed 9 8 22 12 9 5 13 10
Table 12
Final Design for Two Hundred Bar Truss
Final Cross- Final Cross- Final Cross- Final Cross-
Sectional Sectional Sectional Sectional
Area (in?) Area (in?) Area (in2) Area (in2)
Member | Venkayyal This Member |Venkayya| This Member |venkayya | This Member |venkayya | This
No. Ref. 13 | Paper No. Ref. 13| Paper No. Ref. 13 | Pancr No. Ref. 13 Paper
10 1.313 0.340 35 0.991 2.904 69 0.816 3.427 103 5.073 5.739
2 1.313 0.340 36 0.991 2.904 70 0.816 3.427 104 5.073 5.739
3 0.233 0.10 37 1.011 1.479 71 1.309 4.940 105 0.173 0.1
4 0.233 0.10 38 1.011 1.479 72 1.309 4.940 106 0.173 0.1
5 0.343 0.588 39 1.251 4.389 73 1.497 1.871 107 1.895 0.213
6 0.343 0.588 40 1.251 4.389 74 1.497 1.871 108 1.895 0.213
7 0.605 2.798 41 1.417 1.734 75 2.483 2.384 109 0.127 0.106
8 0.605 2.798 42 1.417 1.734 76 2.483 2.384 110 0.127 0.106
9 1.024 3.052 43 0.742 0.10 77 4.318 4.970 113 1.95 0.325
10 1.024 3.052 44 0.742 0.10 78 4.318 4.970 112 1.95 0.325
11 3.243 4.151 45 0.377 0.10 79 5.326 5. 515 113 0.201 0.372
12 3.243 4.151 46 0.377 0.10 80 5.326 5.515 114 0.201 0.372
13 0.435 0.122 47 0.750 0.109 8] 722 6.403 115 2151 1.412
14 0.435 0.122 48 0.750 0.109 82 7.22 6.403 116 2.151 1.412
15 0.208 127 49 0.538 0.229 83 8.288 6.896 117 0.237 0.363
16 0.208 L1127 50 0.538 0.229 84 8.288 6.896 118 0.237 0.363
17 0.316 2.483 51 0.333 0.10 85 10.649 8.039 119 2.835 2.798
18 0.316 2.483 52 0.333 0.10 86 10.649 8.039 120 2.835 2.798
19 0.512 }2.174 53 0.813 {0.138 87 11.752 | 8.462 121 0.210 |2.765
20 0.512 2.174 54 0.813 0.138 88 11.752 8.462 122 0.210 2.765
21 0.703 2.278 55 0.984 |0.658 89 14.981 [10.799 123 4.281 7.129
22 0.703 2.278 56 0.984 0.658 90 14.981 {10.799 124 4.281 7.129
23 0.782 0.108 &7 0.491 0.565 91 16.104 11.855 125 0.377 0.1
24 0.782 0.108 58 0.491 0.565 92 16.104 {11.855 126 0.377 0.1
25 0.784 0.10 59 0.884 0.731 93 1.348 0.1 127 0.333 0.1
26 0.784 0.10 60 0.884 0751 94 1.348 0.1 128 0.333 0.1
27 0.749 0.106 61 0.996 1.454 95 1.299 0.1 129 0.491 0.565
28 0.749 0.106 62 0.996 1.454 96 1.299 0.1 130 0.491 0.565
29 0.954 0.251 63 0.634 2.750 97 1.391 0.487 131 0.634 2.7°0
30 0.954 0.251 64 0.634 2.750 98 1.391 0.487 132 0.634 2.750
31 0.797 0.541 65 1.049 3.436 99 1.687 3.598 133 0.816 3.428
32 0.797 0.541 66 1.049 3.436 100 1.687 3.598 134 0.816 3.428
33 0.984 0.807 67 1.175 1.767 101 2.495 4.42° 135 1. 710 0.137
34 0.984 0.807 68 1.175 1.767 102 2.495 4.421 136 1.771 0.137
57
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Final Cross- Final Cross- Table 14
Sectional Sectional Final Design Comparison for E
Area (in€) Area (in2) Twenty-five Member Frame
Member |Venkayya| This Member {Venkayyal This Member Cross-Sectional Areas (in>)
No. #; 13 | Paper No. Ref. 13 | Paper Case 1 Case 2
a2 0.518 .06 169 4.798 7.187 Nember Briggs This Paper This Paper
138 9-538 | 0.106 |} 170 4.798 | 7.187 Number Ref.14 (N=0.1) (n=0.1)
139 1.85 0.242 171 5.662 8.053
0 £.83 0.242 || 172 5.662 | 8.053 1 138.00 | 129.s5 337.79
141 0.519 0.106 173 5.737 7.936
. . 2 148.58 153.26 293.07
142 Q0.519 0.106 174 5.737 7.93
. -936 3 154.08 151.29 162.15
143 1.988 0.915 175 6.688 8.574
3 . 4 28.34 31.63 69.68
144 1.988 0.915 176 6.688 8.574
148 0.833 o 3t 5 128.93 133.64 170.02 3
146 N D Ad 177 6.274 7.864 = 5.00 5.00 52.19
d 3 178 6.274 7.864 7 130.10 131.58 217.43
147 2.558 2.137 179 7.285 8.40
148 2 e 2 137 . . 8 15.72 23.37 108.73
s o san o83 180 7.285 8.40 9 162.97 170.80 233.83
el 0'587 0‘523 181 5.695 6.545 10 5.00 5.00 110.55
151 Y. 432 . 656 182 5.695 6.545 11 120.97 119.91 170.29
183 3'932 5'656 183 6.713 7.062 1:2 111.06 110.78 181.92
153 0'713 0.10 184 6.713 7.062 13 5.00 5.00 37.35
% 0'713 0'10 185 8.989 8.095 14 122.00 123.06 109.72
155 0. 116 0.106 186 8.989 8.095 15 5.00 5.00 105.77
156 o.1e Sl 187 R0.687  [20.046 16 52.96 54.00 147.31
157 Gl S 188 0.687  120.046 17 191.76 190.80 233.56
56 0'116 8. 189 9.594 9.454 18 5.00 5.00 191.63 |
159 gy 0. 156 190 9.594 9.454 19 119.70 123.13 336.97 ‘
P 0'116 0'756 191 1.156 1.860 20 5.00 5.00 199.56 k
P o 116 € 20n 192 2.278 2.397 21 123.74 119.32 465.20
3 5 193 3.346 3.762 22 8.61 5.00 191.92
162 0.116 6.295 194 4.495 4.191
. . 23 5.00 5.00 88.26
163 0.116 0.106 195 5.626 5.799
. . 24 5.00 5.00 84.14
164 0.116 0.106 196 6.770 6,252
6s = . . 25 48.78 48.67 95.59
1 3.402 5.078 197 7.822 7.107
166 3.402 5.078 198 8.969 7.520 vol. 187421 188215 463523 %
167 4.575 6.726 199 9.800 8.038 iin3) 1
168 4.575 | 6.726|| 200  [10.95 7.913 Analyses o 15 10 i
CPU b 1849.00| 69.02 38.79 :
(sec) ‘1
%Not Applicable
b
All tines on IBM 360/6%
i
:
;
Table 13. Final Design Comparison for Three Member Frame
Case 1 Case 2 Case 3
Member Briggs SUMT This Paper SUMT This Paper SUMT This Paper
Number Ref.14 (n=0.15) (n=0.15) (n=0.2)
1 19.74 19.68 19.81 18.34 17.78 6.22 6.43
2 105.38 | 105.43 105.39 134.0 130.07 47.74 46.42
3 30.13 30.12 30.18 64.44 69.31 21.87 23.04
vVol.
(in3d) 15525 15526 15538 21677 21716 7584 7589
Analyses -a -a 6 -a 9 -a 7
CPU
(sec)® 10.19 42.0 1.17 44.09 1.62 68.9 1.27
%ot Applicable
PAl1l times on 1BM 360/65
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